AI 如何赋能协作学习? 人工智能在协作学习中的角色扮演与应用实践综述

How does AI empower collaborative learning? A Review of the Role and Application

Practices of Artificial Intelligence in Collaborative Learning

沈硕文¹, 王靖² 江南大学 1945454015@gq.com

【摘要】 本研究旨在综述 AI 在协作学习中扮演的关键角色,并深入分析角色促进学习者之间互动质量和协作学习效果的关键路径。研究发现,人工智能赋能协作学习,以互动对话为特征,以学习分析、数据挖掘为抓手,凭借人机交互技术,通过扮演智能工具、智慧学伴和智能导师三种角色,以面向过程的实时测量方式,全面、系统地监控协作的细粒度过程,在认知、情感和社会等多个维度为学习者开展协作学习提供支持,通过诱发与消解社会认知冲突,以智能化的干预方式促进学习者的任务理解、调节意识与评价反思等。因此,本研究建议创新"人机协同"理论,明确人工智能在协作学习中的作用机制,并培养学习者的人机协同能力与素养。

【关键词】 协作学习; 人工智能; 人机协同; 智能教育

Abstract: The purpose of this study is to review the key roles played by AI in collaborative learning, and to conduct an in-depth analysis of the critical paths through which these roles promote the quality of interaction among learners and the effectiveness of collaborative learning. Research has found that AI-empowered collaborative learning is characterized by interactive dialogue, takes advantage of learning analysis and data mining, relies on human-computer interaction technology, and assumes three roles: intelligent tools, smart companions, and intelligent tutors. Through real-time process measurement, it provides comprehensive and systematic monitoring of the fine-grained collaborative processes. It supports collaborative learning for learners across multiple dimensions, including cognition, emotion, and society. By inducing and resolving socio-cognitive conflicts, it promotes tasks understanding, regulation awareness, and evaluative reflection among learners through intelligent interventions. Therefore, this study suggests innovating the "human-machine collaboration" theory, clarifying the mechanism of AI's role in collaborative learning, and cultivating learners' abilities and literacy in human-machine collaboration.

Keywords: Collaborative Learning, Artificial Intelligence, Human-Machine Collaboration, Intelligent Education

1. 引言

协作学习作为一种关键的教学策略,已逐渐成为培养学习者批判性思维、团队协作能力及复杂问题解决等 21 世纪高阶技能的有效途径(Karantzas et al.,2013; 丁继红等,2024)。但协作学习本身的复杂性与协作中个体的独特性使得深入分析与挖掘协作学习的互动特征和规律极具挑战。人工智能(Artificial Intelligence, AI)技术的不断发展,特别是自 2022 年以来,以 ChatGPT 和 DeepSeek 为代表的大语言模型的问世,使得协作学习形态和应用场景得到了前所未有的拓展。这些技术革新不仅突破了传统人-人协作的边界,催生了人-机协作、人-机-人协作等新模式(郑兰琴等,2024; Liu et al.,2024),还极大地丰富了协作学习场景,从传统的面对面互动,延伸至在线协作、计算机支持的协作学习,以及线上线下混合式学习等多种场景。人工智能在协作学习中所扮演的角色愈加多样且复杂,它不仅作为智能辅助工具提升学习者协作效率(Gao et al.,2022),还发挥着智能导师、智慧学伴等不同角色的作用(Ouyang et al.,2022),进而深刻的影响着人机交互的动态关系。

目前,已有研究者从AI技术应用类型(Zhang et al.,2021)、面向的目标人群(Baker & Smith,2019)及不同范式(Ouyang & Jiao,2021)的角度,对人工智能在教育(高等教育、语言学习、科学教育等)中的应用进行了探索,但尚未有研究者聚焦协作学习领域,从人工智能所承担的不同角色这一视角出发进行系统性思考。具体来说,AI在协作学习中扮演了哪些

关键角色,这些角色是如何促进学习者之间互动质量和协作学习效果的?目前 AI 赋能协作学习的实践中还存在哪些问题或挑战?未来应如何克服?基于上述问题,本研究采用系统性文献综述法,对国内外人工智能赋能协作学习的相关实证研究文献进行分析,以期为更好地利用人工智能干预、编排、分析乃至参与协作学习提供借鉴依据和创新思路。

2. 研究方法与过程

本研究采用系统性文献综述法,选取中国知网数据库(CNKI)及 Web of Science(WOS)引文索引数据库作为文献来源,以 "artificial intelligence" AND "collaborative learning"为主题词进行检索,检索时间限制为 2019 年 1 月 1 日-2024 年 4 月,共获取 1263 篇文献。为确保样本文献与研究问题的高度相关性,研究制定了文献筛选标准:研究内容是否为人工智能技术支持的协作学习实证研究,经初筛、复筛确定了最终纳入本研究的 40 篇文献。

3. 研究结果

3.1. 人工智能作为工具支持学生开展协作学习

人工智能作为一种认知工具,一方面可以通过可视化手段呈现小组成员在群体互动过程中 的认知参与与变化信息,来引导小组成员进行自我反思与调节,以促进主体间的互动与协商。 如, Chen 等研究者开发了一个主题分析即时反馈系统, 该系统通过自然语言处理技术分析并 挖掘不同群体的异步在线讨论内容,使用条形图、表格和知识图谱等可视化工具展示讨论主 题分布。同时,学习者可通过点击显示的"主题词条"浏览与主题相关性最高的帖子,极大 地促进了学习者异步讨论的整体表现和讨论复杂度与广度。人工智能作为一种情感工具,可 以通过分析学习者面部表情、协作对话等数据, 提取能够反映学习者个体或群体情感信息的 相关特征,结合特征分析结果为其提供可视化的情感表征与反馈信息。如, Zheng 等研究者 采用 Bert 模型主动分析学习者在线讨论记录的行为和情绪。平台会根据分类结果,以直方图 的形式为学习者提供行为及情绪分类汇总结果, 并辅之个性化反馈, 鼓励学习者积极调整协 作学习行为与状态。人工智能作为一种社交工具,一方面,它可以通过可视化手段展现小组 成员的社会交互密度、质量等信息、来协调主体间交互的紧密程度、促进相互依赖的社会关 系的形成,从而有效提升小组内部的凝聚力。如, Wang 等研究者基于 MOOC 平台中学习者 的互动行为、文本及个人属性数据,使用社会网络分析和自然语言处理构建合作者关系网络, 探究社会关系、年龄和主题相似度等因素对建立协作关系的影响。Yang 等研究者借助 KBDeX 这一社会网络分析工具, 自动分析学习者的讨论记录, 基于分析结果, 以知识图谱可视化小 组协作探究内容和互动状态。

3.2. 人工智能作为智慧学伴参与学生协作学习

随着自然语言处理和生成式人工智能等技术的不断发展,研究者们开始探讨如何使人工智能扮演协作同伴的角色,通过与学习者进行多轮次的对话协商,创设基于"人机协同"的话轮转换与对话模式,共同完成复杂的学习任务,实现双方独立无法达成的效果(Molenaar, 2022; 郝祥军等, 2023)。例如, Liu 等研究者让学习者与 ERNIE Bot 协同设计化学课程。Guo 等研究者通过为学习者提供 Argumate 聊天机器人,进行一系列面向任务的对话,以引导学习者明确论点、论据以及反驳等论证要素,并可视化学习者的论证结构,进而支持学习者开展课堂辩论。Engwall 等研究者通过让学习者与机器人进行瑞典语对话练习,模拟人类社交互动,以提升学习者语言能力,同时还探究了四种不同的机器人行为(采访者、叙述者、促进者和对话者)对学习者互动和协作的影响。此外,另有研究者致力于设计、增强和优化人工智能与学习者之间的互动,使其更具开放性、探索性和批判性(Kim et al., 2022; Ouyang & Jiao, 2021)。

例如,Xie等研究者设计了一个名为MOCA的在线会话代理,通过与学习者对话深入了解其学习动机与学习态度,以进行针对性地引导和干预,进而提高学习者自我效能感和协作学习参与度。Kim等研究者让AutoDraw扮演构思和创作伙伴的角色,与学习者一起协同完成绘图任务。结果发现,这种方式为学习者创造了更有意义的学习体验,并显著提高了绘画任务的质量。

3.3. 人工智能作为智能导师指导学生协作学习

面对多个小组的协作学习,教师难以全面监控或干预各个小组,小组学习者学习投入度不足、知识建构浅层化的问题需要其他力量的介入才能解决。人工智能可以作为智能导师,或者说向导型代理,通过营造模拟教学场景或与学习者进行对话,逐步引导和鼓励学习者参与到协作学习活动中,并以教师身份提供认知、情感与社交支持。

作为认知导师,人工智能可以为学习者提供个性化学习支持、学习分析与资源推荐、学习指导与反馈等。例如,Zheng等研究者采用Bert模型自动分析学习者讨论记录中所包含的话题分布与特征,并借助知识图谱以及LDAvis等工具可视化呈现分析结果。同时,系统会根据每个小组的具体情况提供个性化的反馈与前馈结果与调整建议,并为其推荐合适的学习资源。研究结果表明,实验组在协作知识建构水平、小组绩效以及社会共享调节水平等方面均显著优于对照组。作为社交导师,人工智能可以通过提出问题、引导讨论,以及动态调整与协调小组构成与分工,来优化小组交互与协作。例如,Echeverria等研究者使用Lynnette和APTA两个人工智能系统为学习者提供数学线性方程学习支持。其中,Lynnette作为认知导师,以提示和反馈的形式为学习者提供分步指导,让学生单独求解方程;APTA作为教师助手,通过分析Lynnette中学习者的学习状况与学习需求等个性特征,可以自适应地指导一名学生(同伴辅导员)辅导另一名学生(被辅导者),实现个人学习到同伴协作学习之间的动态转换。作为情感导师,人工智能可以引导学习者进行更多的批判性对话,通过及时给予鼓励与表扬,使学习者积极对待协作任务。例如,Nguyen(35)让会话代理扮演导师的角色,通过与学习者对话,了解学习者对海洋生态系统相关知识的掌握情况,并鼓励小组学习者通过有效互动,积极参与协作知识建构。

4. 总结与展望

本研究从人工智能在协作学习中扮演的的关键角色入手,结合协作学习所具备的认知、情感和社会等多维特征,深入分析了不同角色如何诱发并促进学习者的有效互动,提升协作学习质量。其基本结论为:人工智能赋能协作学习,以互动对话为特征,以学习分析、数据挖掘为抓手,凭借人机交互技术,通过扮演智能工具、智慧学伴和智能导师三种角色,以面向过程的实时测量方式,全面、系统地监控协作的细粒度过程,在认知、情感和社会等多个维度为学习者开展协作学习提供支持,并以智能化的干预方式促进学习者的任务理解、调节范识与评价反思等。协作学习的认知过程是融合了个体概念转变和群体协同建构的双向循环过程,该过程的核心在于社会认知互动,而这种互动的核心动力源于认知冲突。认知冲突重义。而人工智能通过扮演智能工具、智慧学伴与智能导师,无论是通过工具可视化表征多维度的交互信息,抑或是作为学伴或导师与学习者进行多轮次的对话,其本质上都是诱发与消解社会认知冲突的过程。一方面人工智能可以通过可视化工具外化原有"人一人"协作交互中认知、情感和社会交互参与信息,呈现组间及组内的协作交互信息差,促使学习者发现冲突,围绕这些认知冲突展开更有深度的、有意义的协商,最终促进协作群体的知识建构。另一方面、人工扮演同伴和导师的角色,可以在学习者对话交互过程中,主动提出问题或引导

学生质疑与批判,诱发学习者群体及个体的认知不平衡,从而促使其不断内省,反向促进自身的认知加工和完善。未来,还需要不同领域研究人员协同发力,精准辨识学生的学业状况和学习需求,动态调整人工智能角色,以满足学生多样化的学习需求,同时也需要关注不同的角色设计对人工智能赋能协作学习者成效的影响。

参考文献

- 郑兰琴, 范云超 & 牛佳玉. (2022). 基于在线协作学习交互文本的跨领域知识图谱构建技术. 电化教育研究 (12), 70-77. doi:10.13811/j.cnki.eer.2022.12.010. doi:10.13966/j.cnki.kfjyyj.2023.06.008.
- Chen, J., Wang, M., Kirschner, P. A., & Tsai, C. C. (2018). The role of collaboration, computer use, learning environments, and supporting strategies in CSCL: A meta-analysis. Review of Educational Research, 88(6), 799-843.
- Molenaar, I. (2022). Towards hybrid human-AI learning technologies. European Journal of Education, 57(4), 632-645.
- Kim, J., Lee, H., & Cho, Y.H. (2022). Learning design to support student-AI collaboration: Perspectives of leading teachers for AI in education. Education and Information Technologies, 27(5), 6069-6104.
- Ouyang, F., & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. Computers and Education: Artificial Intelligence, 2, 100020.
- Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427-445.
- Zheng, L., Fan, Y., Huang, Z., & Gao, L. (2024). Impacts of three approaches on collaborative knowledge building, group performance, behavioural engagement, and socially shared regulation in online collaborative learning. Journal of Computer Assisted Learning, 40(1), 21-36.
- Echeverria, V., Yang, K., Lawrence, L., Rummel, N., & Aleven, V. (2023). Designing hybrid human AI orchestration tools for individual and collaborative activities: A technology probe study. IEEE Transactions on Learning Technologies, 16(2), 191-205.