混合式学习环境下体验式学习促进师范生跨学科教学能力的实证研究3

Enhancing interdisciplinary teaching competence for pre-service teachers in China through

experiential learning in a blended learning environment

王鑫1*,高红英2,张宝辉1

- 1陕西师范大学教育学部
- 2陕西师范大学外国语学院
- * wangxin221022@163.com

【摘要】 本研究旨在探索混合式学习环境下体验式学习促进师范生跨学科教学能力的有效性。本研究以九周的学习活动为载体,设计了以体验式学习为指导的教学计划,通过问卷调查、访谈及跨学科教学设计案例等量化与质性数据,综合分析师范生在体验式学习前后跨学科教学能力的变化。研究结果表明,混合式学习环境下的体验式混合学习显著提升了师范生跨学科教学知识、技能、态度等多个方面。该结果强调了混合式学习环境下体验式学习对于促进师范生跨学科教学能力的潜力.为师范生培养体系和课程改革提供了实证支持。

【关键词】 混合式学习环境;体验式学习;师范生;跨学科教学能力

Abstract: This study aims to explore the effectiveness of experiential learning in enhancing interdisciplinary teaching competence for pre-service teachers in a blended learning environment. Using a nine-week learning activity as a carrier, this study designed a teaching plan guided by experiential learning, and comprehensively analysed the changes in pre-service' interdisciplinary teaching competence before and after experiential learning through quantitative and qualitative data such as questionnaires, interviews, and interdisciplinary teaching design cases. The results of the study showed that experiential blended learning in a blended learning environment significantly enhanced multiple aspects of pre-service' interdisciplinary teaching knowledge, skills, and attitudes. The results highlight the potential of experiential learning in a blended learning environment to promote pre-service' interdisciplinary teaching competence and provide empirical support for pre-service teacher training system and curriculum reform.

Keywords: Blended learning environment, experiential learning, pre-service, interdisciplinary teaching

1. 问题提出

跨学科教学(interdisciplinary teaching)是一种以问题解决为导向的教学方式,通过主题整合不同学科的知识、观点和方法(Sudderth, 2022),旨在帮助学生解决实际问题。跨学科教学被视分科教学(subject-based teaching)的补充方案,适合应对复杂的全球社会问题挑战。在 K-12 阶段开展跨学科教学,逐渐成为基础教育学生核心素养培育的必然要求(胡, 2023)。

为有效促进跨学科教学,当前研究致力发展教师的跨学科教学能力。跨学科教学能力是指教师以提高学生核心素养为目标,创造性地综合运用两种或两种以上学科知识,设计以实际问题为导向学习活动的知识、技能、态度的集合(吴 & 蔡,2024)。师范生作为未来教师,具备跨学科教学能力是其走上工作岗位的基础能力,然而师范生跨学科教学能力水平不容乐观(Wang et al., 2024),因此亟需促进师范生跨学科教学能力。

具体可操作的学习活动框架是促进师范生教学能力的关键因素。当前研究设计了系列旨在促进师范生跨学科教学能力的学习活动框架(Macalalag et al., 2020; 杨 et al., 2023; 钟 & 刘, 2021)。然而这些学习活动框架还存在问题:大多数针对师范生的跨学科教学能力培训项目提

³ 本研究为陕西师范大学 2024 实验技术研究项目"新质生产力"背景下外语实验室二语习得过程监测与干预系统构建(项目号: SYJS202413)的阶段性研究成果。

供的跨学科教学设计与实践机会有限(Ryu et al., 2019), 这成为制约师范生跨学科教学能力发展的关键问题; 当前学习活动设计中仍过于强调学科知识的堆叠, 对跨学科教学的本质特性挖掘不足; 有研究虽提出了活动框架, 但在具体的活动内容和操作路径上缺乏清晰的指导(孟&王, 2023)。综上, 有必要设计一套专门促进师范生跨学科教学能力的学习活动, 强调实践体验机会, 突出活动目标和内容, 从而为师范大学、教育学院等师范类教育机构提供指导, 从而设计跨学科教学能力培养课程和教学提案。

混合学习环境为本研究提供了一种富有成效的实施场域。混合学习融合了面对面互动与在线教育的优势,缓解了诸如资源匮乏、学生参与度不高等传统职前教师教育模式中存在的问题,被广泛应用于师范生教学能力发展(Chekour et al., 2024; Olawale & Matshikiza, 2024)。鉴于上述优势,本研究在混合学习环境下进行学习活动设计。体验式学习能够有效提高学习者的实践体验和反思,为本研究提供了学习活动设计的具体指导框架。,回应了当前学习活动缺乏实践机会和可操作性的研究空白。尽管有研究表明体验式学习被应用于师范生教学能力培养(Lee, 2019; Poonputta, 2023),但是在混合学习环境下体验式学习活动能否显著提升师范生的跨学科教学能力还尚未得到验证。基于此,本研究研究问题如下:

- (1) 如何在混合学习环境下设计一种促进师范生跨学科教学能力的体验式学习活动?
- (2) 该体验式混合学习活动的实施效果如何?

2. 理论框架

2.1. 体验式学习框架

体验式学习能够通过实践活动发展学习者知识、技能和价值观。体验式学习包括四个关键阶段:具体经验、反思观察、抽象概念化和主动实践。图 1 展示了经典的 Kolb 体验式学习框架(Kolb, 1984)。该框架因其强调学习者主动参与和注重反思的特点,被广泛应用于职前教师培养(Gao, 2015)。本研究以体验式学习框架为基础,设计并整合一个能够促进师范生跨学科教学的学习活动。具体包括以下四个步骤: (1) 具体经验:引导师范生在真实或模拟情境中体验跨学科教学活动,使其获得实践经验。(2) 反思观察:通过教师反馈、同伴互评以及自我评估等方式,帮助师范生反思活动过程及效果,总结经验和教训。(3) 抽象概念化:借助课程教学与讨论,引导师范生将反思中的成果上升为理论认知或具体的教学策略。(4) 主动实践:让师范生将改进后的教学策略或方法应用于新一轮的活动情境中,进一步优化其跨学科教学能力。这一学习框架有效地整合了不同阶段、不同目标的学习活动,通过理论与实践的动态交互,帮助师范生在持续的反思与实践中不断提高跨学科教学能力。

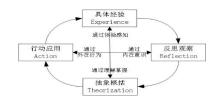


图 1 kolb 体验式学习框架(Kolb, 1984)

2.2. 跨学科教学能力框架

当前研究开发了诸多跨学科教学能力框架(朱德全 & 彭洪莉, 2023; Kelly C. Margot & Todd Kettler, 2019)。对能力模型的主要特征回顾表明,跨学科教学能力框架包括三个关键领域: 跨学科教学知识、技能和态度。表 1 描述了能力框架的具体内容。

夷 1	跨学科教学能力框架(Wang et a	1 2024)
1X I	TO THE ALWAND CLA	1 /3///41

一级 维度	二级维度	三级维度	参考文献
跨学科教 学 学知识	跨学科知识	跨学科概念理解、学科知识储 备、学科逻辑关联	(朱 & 彭, 2023);
学知识	跨学科教学法	适用跨学科教学的各类教学	- (Chai 等, 2013)

教			法(如: PBL、5E 教学法)	
学			在具体教学情境下应用跨学	•
能		巧于什教于 云和 仄	科教学法教学促进知识理解	
カ		跨学科教学设计能力	目标设计、主题设计、内容设 计和模式选择	(李 & 梁,
	跨学科教 学技能	跨学科教学实施能力	创设教学情境、学习活动组 织、教学策略运用、学习过程 指导	- 2023); STEM 教师能 力等级标准(试行); STEM - EDUCATION
		跨学科教学评价能力	评价内容多维性、评价方法多 样性和评价主体多元性	FRAMEWORK
		跨学科教学信念	价值理解、本质认识	STEM 教师能力
	跨学科教 学态度	专业发展意愿	参与培训、寻找资源、调整教 学	等级标准(试行); InTASC Model Core
		跨学科教学态度	认同、兴趣、期待	Teaching Standards

3. 方法论

3.1. 研究环境和参与

3.1.1. 研究环境

本研究的实施环境是 S 师范大学教师教育类选修课程《跨学科融合(STEM)教育基础》。该课程是一门线上线下混合课程,线上学习平台是中国大学 MOOC 平台

(https://www.icourse163.org/course/SNNU-1471598169), 线下学习在多媒体教室进行。

3.1.2. 参与者

参与者共 46 人,其中男生 10 人,女生 36 人。均为 S 大学大二师范生(平均年龄 19 岁),专业来源十分广泛,包括:学前教育、物理学、化学、生物科学、教育技术学等专业学生。选课学生心智发展成熟,自主选择《跨学科融合(STEM)教育》课程。这些学生正处于职前教师培训阶段,对跨学科教学有初步了解但尚未形成对跨学科教学稳固的理解。研究开始前,研究者向学生发放了《知情同意书》,学生知情并支持基于该课程开展研究。

3.2. 学习活动设计

本研究基于体验式学习框架,在混合式学习环境下设计了一套分阶段、递进式的专题学习活动,旨在实践体验中促进师范生跨学科教学能力。学习活动分为线上学习和线下课堂两个阶段,每个阶段都融入了体验式学习的核心步骤(具体体验、反思观察、抽象概括、行动应用)。表2呈现了五个专题活动的具体内容。

表 2 混合式学习环境下促进师范生跨学科教学能力的体验式学习活动

活动	目的	时间	步骤	具体经验	反思观察	抽象概念	主动实践
				视频学习:介	在线讨论:设	知识整合: 教	在线测验:通
				绍跨学科教	置讨论问题,	师及助教在	过章节测验,
	引导师范		线上	学定义及发	提供问题支	线答疑进行	检验学习成
活动	生对跨学		线上	展,帮助师范	架	针对性反馈	效
一:跨	科教学概	第		生建立整体			
学科	念、发展			认识			
教学	背景、设	一、 二周		目标设定:引	互动反思: 师	交流分享:	任务衔接: 知
初认	计流程形	一凡		导师范生明	生互动,启发	设置讨论问	识应用于新
识	成初步认		线下	确角色任务	学生反思	题巩固师范	任务情境, 促
	识		线下	与职责, 并进		生对跨学科	进知识迁移
				行重难点专		教学理解	
				题讲解			

							GCCCE 2025
活动				视频引导:讲	在线反馈:资	互动提升: 讨	在线测验:通
二:体	*		线上	解跨学科教	源检索任务	论区分享经	过章节测验
验跨	帮助师范			学资源检索	布置,学员在	验, 教师及助	和资源任务
学科	生掌握跨			分类技巧	线反馈	教点评	检验成效
教学	学科教学	第三		实践任务:分	互动反思:师	资源分享:小	总结延伸: 优
资源	资源的检	周		组完成跨学	生互动, 启发	组汇报检索	化检索方案,
的检	索、筛选		线下	科教学资源	学生反思	成果, 组间互	思考实际教
索过	与整合		20,1	检索、筛选与		评与教师点	学中的资源
水之 程				整合 Wiki 作		评完善检索	检索与应用
/工 				业		方案	
				视频学习: 介	在线讨论:设	总结提炼:形	在线测验:通
活动	引导压盐			绍跨学科教	置讨论问题,	成跨学科教	过章节测验
三:体	引导师范			学主题、目	提供问题支	学目标、内容	和设计初步
验跨	生在学科		线上	标、内容与教	架	与教学模式	跨学科教学
学科	背景和教	焓		学模式选择		选择的基本	主题, 检验学
教学	学情境中期初	第四		过程		原则和实施	习成效
主题/	中,理解	四、				方案	
目标/	典型跨学	五、		协作任务:	互动反思:	成果展示:	应用提升:
内容/	科教学案	六周	线下	协作完成"认	师生互动,启	展示协作成	优化策略,并
模式	例的设计			识学科"任	发学生反思	果, 评析跨学	布置下一步
选择	与实施过			务,深化对学		科教学案例	任务
过程	程			科到跨学科			
				教学认识			
				视频学习:、	在线讨论:	总结提炼:	在线测验:
14. =h	11 当儿生			介绍跨学科	设置讨论问	形成跨学科	章节测验和
活动	从学生和		WE L	教学评价内	题,提供问题	教学评价原	协作任务, 检
四:体	教师双重		线上	容方法, 回顾	支架	则,总结典型	验学习成效。
验跨	视角,设计数学组	第		跨学科教学		跨学科教学	
学科 学习	计跨学科 学习和教	^卯 六、		活动流程		设计过程	
ナフ 和教	子刁和教 学任务,	ハ、七周		协作任务:	互动反思:	成果展示:	总结延伸:
和教 学设	子任分, 帮助师范	七周		体验桥梁设	师生互动启	汇报桥梁制	优化教学设
于以 计过	帝 助 师 池 生 理解 跨		化工	计制作,完成	发学生反思	作过程、作品	计活动方案,
程	王垤麻圬 学科教学		线下	"设计制作一		和教学设计	思考实际跨
任	于什么于			座桥"跨学科			学科教学设
				教学设计			计与实施
江山				视频学习:	在线讨论:	总结提炼:	在线测验:
活动				回顾跨学科	设置讨论问	形成跨学科	通过章节测
五:体	完成跨字 完成跨字 科教学案 例设计		线上	教学的设计、	题,提供问题	教学设计、实	验和案例分
验跨				实施、评价全	支架	施和评价的	析检验学习
学科		第		过程		小组方案	成效
教学 案例	深化师范	八、		协作任务:	互动反思:	成果展示:	总结延伸:
采例 设计	生实施跨	九周		体验跨学科	师生互动启	汇报跨学科	优化教学行
	学科教学		丝 T	教学案例设	发学生反思	教学案例设	动方案, 思考
和实	的能力		线下	计实施过程		计与实施,形	实际跨学科
施过程						成未来教学	教学的设计、
程						行动方案	实施与评价

3.3. 研究设计与方法

本研究采用混合方法研究设计,目的是为了进行三角测量而互补结果。同时,本研究采用单组前后测设计(one-group pretest-posttest design),即在特定的师范生群体中实施干预措施,并在干预前后进行测量以评估其效果。

3.4. 研究工具

3.4.1. 跨学科教学能力测量量表

本研究旨在通过标准化测评工具测量师范生在学习活动前后的跨学科教学能力变化情况。以跨学科教学能力框架为依据,改编了师范生跨学科教学能力测量量表(Wang et al., 2024)。该量表包括两个部分,共计36道题项。第一部分共设有10道题目,涵盖了姓名、学号、性别、年级、专业、跨学科学习经历、跨学科教学培训经历、跨学科教学(实习)经历等基本信息。第二部分,共设25道题项,包括跨学科教学知识(Q6)、跨学科教学技能(Q11)和跨学科教学态度(Q8)3个维度。使用五点李克特量表,范围从1="非常不同意"到5="非常同意"。在征得参与者同意后,问卷分别在活动1开始前和活动5结束后分发。

3.4.2. 师范生跨学科教学理解认知结构编码

师范生跨学科教学理解体现为跨学科教育知识、跨学科教学能力、跨学科教学态度三维度, 该编码体系涵括7个培养要素,具体如表3所示。

表 3 师范生跨学科理解的认知结构编码

	要素	描述	码	编
	跨学科教学知识	对跨学科教育理念的理解,如跨学科教学目的、实施策略。 此还包括对不同学科之间相互关联和整合方式的认识		CK
与计	教学目标、主题 内容的选择与设	明确跨学科教学目标;选择和设计连接不同学科的主题; 挑选适合跨学科教学的内容		PK1
- 1	教学策略选择	掌握跨学科教学策略, 如项目化学习、问题解决学习等		PK2
カ	学习环境设计能	创造支持跨学科学习的教学环境和氛围		PK3
/•	评价能力	设计有效评估学生跨学科理解和能力的评价工具和标准		PK4
能	资源选择与整合力	能够找到并有效利用来自不同学科的教学资源		PK5
	跨学科教学情意	对跨学科教育持有积极的态度和信念;能够与不同学科背景的教师和学生合作;对于学科融合和跨学科教学的重要性有清晰的认识和认同;能够不断反思和改进教学实践		ЕВ

3.4.3. 跨学科教学设计案例评估工具

为测量师范生跨学科教学设计案例的质量,本研究改编了 Guzey 和 Moore 等人在 2017 开发的 STEM 整合课程评估(STEM-ICA)工具(Guzey et al., 2016),最终制定了如表 4 所示的跨学科教学设计评估工具,研究者根据工具中各项的具体描述,对各小组提交的跨学科教学设计进行评分,评分标准为 1 到 5 分(1 分为完全不符合,5 分为完全符合)。

表 4 跨学科教学设计评估工具维度及解释

	维度	在教学设计中的描述
	主题符合真实问题	选择适合学生年级和兴趣的主题,确保问题与学生实际生活相关
	核心素养导向目标	目标撰写符合核心素养要求
容	符合课标的学科内	评估教学设计中是否成功地整合了各学科的核心知识和技能
	跨学科教学策略	教学设计使用不同教学方法和活动,如探究学习、项目学习等。
	协作活动设计	教学中学生协作解决问题,评估学生的协作技能是否得到发展。

评价设计 组织逻辑顺序 资源和学习工具整 使用不同评价方法和工具,如表现评估、自我评价等。 教学活动是否按照逻辑顺序组织,时间安排是否合理等。

教学资源和学习工具的是否多样和高质量。

3.5. 数据收集与分析方法

量化数据来自师范生跨学科教学能力量表,分别在学习前后进行收集。运用配对样本 t 检验来分析师范生前后测能力水平变化。质性数据来自对师范生的访谈及在活动 5 师范生提交的跨学科教学设计案例。访谈在活动前后进行,通过认知网络分析师范生跨学科教学理解变化。师范生跨学科教学设计案例通过内容分析法及跨学科教学设计案例评估工具打分。

4. 研究结果

4.1. 跨学科教学能力量表测量结果

本研究采用配对样本 t 检验来分析师范生跨学科教学能力前后测水平差异。表 5 描述了前后测水平差异的分析结果。其中,跨学科教学态度维度因数据未符合正态分布(相关性=0.39,p=0.01),采用了非参数检验的威尔科克森符号秩检验的方法。研究结果显示,师范生跨学科教学知识(Teaching knowledge,TK)前测平均得分为 2.37 ± 0.73 ,后测平均得分为 3.80 ± 0.52 ,t=-13.01,p=0.000<0.05;师范生跨学科教学技能(Teaching Skills,TS)前测水平为 3.09 ± 0.68 ,后测水平为 4.03 ± 0.51 ,t=-7.58,p=0.000<0.05;师范生跨学科教学技能(Teaching Attitude,TA)前测水平为 4.05 ± 0.63 ,后测水平为 4.25 ± 0.59 ,Z=-2.21,p=0.027<0.05;师范生跨学科教学能力(TOTAL)前测水平为 3.23 ± 0.48 ,后测水平为 4.05 ± 0.49 ,t=-9.62,p=0.000<0.05。数据表明,师范生跨学科教学能力各个维度的后测得分高于前测,且跨学科教学能力各维度的前后测存在显著差异。这意味着混合式学习环境下体验式学习有效促进了师范生跨学科教学能力。

表 5 师范生跨学科教学能力前、后测水平配对样本 t 检验结果

						标		差值	95%	6 置				
维度		前测		后测	准	误差	信	区间			_	t/Z		
华及		月·1 7次)		石网		平		下限		上限		U/Z		p
					均	值		1 12		エル				
TK		2.37 ± 0.7		3.80 ± 0.5		0.1		-1.6		-1.2		-13.0		0.00
1 K	3		2		1		6		1		1		0	
TS		3.09 ± 0.6		4.03 ± 0.5		0.1		-1.1		-0.6		-7.58		0.00
13	8		1		2		8		8			-7.36	0	
TA		4.05 ± 0.6		4.25 ± 0.5		0.1		-0.4		0.00		-2.21		0.02
IA	3		9		0		0			0.00		-2.21	7	
TOTA		3.23 ± 0.4		4.05 ± 0.4		0.0		-0.1		-0.6		-9.62		0.00
L	8		9		9		0		5			-9.02	0	

4.2. 跨学科教学理解的认知网络分析

本研究使用认知网络分析师范生在学习活动 1 和活动 5 中对跨学科教学理解的认知变化。使用 ENA 工具,对学习前后认知的开放性问题进行了分析,获得了前后测师范生跨学科教学理解的思维发展结果。为了对比分析,使用不同颜色标记前后测水平。为检验统计意义上的差异,选择了前后测的平均网络中心位置为代表进行差异性检验。表 6 显示了对两个平均网络的重心位置进行的 t 检验的结果。在第一维度上观察到认知网络之间存在显著差异(前测M=0.32;后测 M=0.32;t(36.76)=16.24;p=0.00<0.05;Cohen's d=4.90)。

表 6 前后测师范生跨学科教学理解的平均网络位置(坐标)的 t 检验结果

	活动 1	活动 5	t
第一维度(X轴)	-0.32	0.32	16.24*
第二维度(Y轴)	-0.07	0.07	1.48

注: *p<0.05。

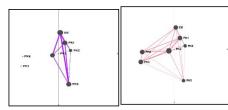


图 2 活动 1 认知网络图 图 3 活动 5 认知网络图

通过图 2 和图 3 可以发现,活动 1 到活动 5,师范生的认知网络结构发生了变化。在活动 1 中,师范生认知结构主要集中于掌握跨学科融合教育目标撰写、主题选择与内容选择与重构原则、方法与流程,掌握包括但不限于基于问题的学习、基于项目的学习等典型模式学习目标。而在活动 5 中,师范生的认知结构更加完整丰富,包括对跨学科教学知识、目标主题内容选择与设计、教学策略选择以及教育资源选择于整合能力。这些结果表明,在教学过程中,师范生的认知结构不断发展和完善,他们的跨学科教学能力和认识逐步深化。

4.3. 跨学科教学设计质量分析结果

本研究通过分析活动5中的"跨学科教学设计案例设计"协作任务的跨学科教学设计质量,来反映师范生跨学科教学能力水平。分析框架为自编的跨学科教学设计质量分析工具(Guzey et al., 2016)。大部分维度上得分较高,表现出较好的质量和效果。特别是在符合真实世界问题的主题、整合符合新课标的学科内容、跨学科教学教学策略、评价和组织方面的得分较高。这说明案例大作业在选择适用于真实世界问题的主题、整合多学科内容、灵活运用教学策略、进行有效评价和组织良好方面表现较好。此外,资源和学习工具整合方面的得分较高,说明在案例大作业中已经较好地整合了适合的学习资源和工具。对于跨学科教学设计质量分析结果印证了混合式学习环境中体验式学习对师范生跨学科教学能力的促进作用。

5. 讨论

研究结果表明,体验式学习活动有效提高了师范生跨学科教学知识、技能、态度。在跨学科教学知识方面,后测显著高于前测,且前后测差值最大。这说明本体验式学习活动在内容选择上充分考虑到了师范生跨学科教学知识的提高。例如,在活动三中的"认识学科"活动,要求师范生对不同学科的定义、历史、结构、课程标准、教材等进行认识、分析与思考,这对于他们从学科知识到多学科知识再到跨学科教学知识起到了良好的支持作用(Hsiao et al., 2023)。在跨学科教学技能方面,后测同样显著高于前测。本研究中很多学习活动的设计最终就体现在师范生跨学科教学技能的提高上。在跨学科教学态度方面,后测显著高于前测。但是需要说明的是,前后测在得分上差距并不向其他维度那样明显,这是由于很多师范生在未参加本课程学习时,就对跨学科教学有较高的兴趣。然而,虽然本研究在促进师范生跨学科教学能力方面取得了一定成果,但仍存在局限性:样本范围限制。研究样本集中于特定师范生群体,可能无法充分代表整个师范生群体特征。研究结果在推广应用时需要谨慎对待;研究时间限制。本研究的学习活动虽然尽量考虑在师范生培养体系的框架下开展,但整体来看时间跨度较短,无法观察到长期效果的变化。未来可进一步开展基于设计的研究和追踪研究,以验证混合式学习环境中体验式学习对师范生跨学科教学能力的长期影响。

6. 结论

本研究检验了在混合式学习环境中体验式学习在高等教育中促进师范生跨学科教学能力的有效性。研究结果表明,基于体验式学习框架的学习活动: (1)显著提高了师范生跨学教学能力; (2)显著提高了师范生对跨学科教学的理解; (3)有效提高了师范生跨学科教学设计水平。这些发现表明,在混合式学习环境中基于体验式学习可以作为促进职前教师跨学科教学能力的实践指南。

参考文献

- Chai, C. S., Koh, J. H. L., & Tsai, C.-C. (2013). A review of technological pedagogical content knowledge. *Journal of Educational Technology & Society*, *16*(2), Article 2.
- Chekour, M., El Morabit, N., Benqassou, I., Lechhab, A., El-Hars, F., & Hafid, M. M. (2024). Integrating Blended Learning in Teacher Training: A Comprehensive Review. *2024 Mediterranean Smart Cities Conference (MSCC)*, 1 4. https://doi.org/10.1109/MSCC62288.2024.10697052
- Gao, X. (2015). Promoting experiential learning in pre-service teacher education. *Journal of Education for Teaching*, 41(4), 435 438. https://doi.org/10.1080/02607476.2015.1080424
- Guzey, S. S., Moore, T. J., & Harwell, M. (2016). Building Up STEM: An Analysis of Teacher-Developed Engineering Design-Based STEM Integration Curricular Materials. *Journal of Pre-College Engineering Education Research (J-PEER)*, 6(1). https://doi.org/10.7771/2157-9288.1129
- Kolb, D. (1984). Experiential Learning: Experience As The Source Of Learning And Development. In *Journal of Business Ethics* (Vol. 1).
- Lee, J. (2019). Experiential Teacher Education Preparing Preservice Teachers to Teach English Grammar through an Experiential Learning Project. *Australian Journal of Teacher Education*, 1 20. https://doi.org/10.14221/ajte.2018v44n1.1
- Macalalag, A. Z., Johnson, J., & Lai, M. (2020). How do we do this: Learning how to teach socioscientific issues. *Cultural Studies of Science Education*, *15*(2), 389 413. https://doi.org/10.1007/s11422-019-09944-9
- Margot, K. C., & Kettler, T. (2019). Teachers' perception of STEM integration and education: A systematic literature review. *International Journal of STEM Education*, 6(1), Article 1. https://doi.org/10.1186/s40594-018-0151-2
- Olawale, B., & Matshikiza, S. (2024). Blended Learning as a Tool for Enhancing the Self-efficacy beliefs of pre-service Teachers in a Teacher Education Program: A Systematic Review. 120 129. https://doi.org/10.2991/978-94-6463-439-6
- Poonputta, A. (2023). The Impact of Project-Based and Experiential Learning Integration on Pre-Service Teacher Achievement in Evaluation and Assessment. *International Journal of Learning, Teaching and Educational Research*, 22(7), Article 7. https://www.ijlter.org/index.php/ijlter/article/view/7926
- Ryu, M., Mentzer, N., & Knobloch, N. (2019). Preservice teachers' experiences of STEM integration: Challenges and implications for integrated STEM teacher preparation. *International Journal of Technology and Design Education*, 29(3), 493 512. https://doi.org/10.1007/s10798-018-9440-9
- Sudderth, A. (2022, January 19). *A Guide for Interdisciplinary Teaching and Learning*. XQ. https://xqsuperschool.org/teaching-learning/interdisciplinary-teaching-and-learning/
- Wang, X., Yuan, L., Li, S., Yu, H., Tuo, P., Du, Y., & Zhang, B. (2024). Developing and validating an Interdisciplinary Teaching Readiness Scale (ITRS) for pre-service teachers in China. *PLOS ONE*, 19(12), e0315723. https://doi.org/10.1371/journal.pone.0315723
- 吴静君, & 蔡慧英. (2024). 中小学教师跨学科教学能力的发展现状与提升对策研究. 教育理论与实践, 44(14), 47-52.
- 孟祥宏, & 王晓莉. (2023). 基于深度学习的 STEM 教师教学设计能力培养研究. 黑龙江高教研究, 41(12), 86 91. https://doi.org/10.19903/j.cnki.cn23-1074/g.2023.12.014

- 朱德全, & 彭洪莉. (2023). 教师跨学科教学素养测评模型实证研究. 华东师范大学学报(教育科学版), 41(2), 1-13. https://doi.org/10.16382/j.cnki.1000-5560.2023.02.001
- 李臣之, & 梁舒婷. (2023). 跨学科教学力:撬动新课程改革的阿基米德点. 湖南师范大学教育科学学报, 22(2), 63 69. https://doi.org/10.19503/j.cnki.1671-6124.2023.02.007
- 杨开城, 张慧慧, & 陈洁. (2023). 论基于理想角色的教师专业发展的个案研究方法. 电化教育研究, 44(1), 123 128. https://doi.org/10.13811/j.cnki.eer.2023.01.017
- 胡庆芳. (2023). 中小学跨学科教学的追问与思考. 基础教育课程, 14, 4-9.
- 钟柏昌, & 刘晓凡. (2021). 跨学科创新能力培养的学理机制与模式重构. 中国远程教育, 10, 29-38+77. https://doi.org/10.13541/j.cnki.chinade.2021.10.004