生成式人工智能对小学生信息科技课程学习行为、表现和感知的影响研究

Impact of Generative Artificial Intelligence Usage on Primary School Students' Learning

Behavior, Performance and Perception in Information and Science Technology Course

许洁, 马学纯, 李艳* 浙江大学教育学院 * yanli@zju.edu.cn

【摘要】 将生成式人工智能(Generative artificial intelligence, GAI)融入 K-12 教育来培养学生的人工智能能力成为当下重要议题。信息和通信技术(ICT)技能作为 21 世纪的核心能力之一,使信息科技课程成为培养人工智能能力的关键场景。采用准实验研究探讨了 GAI 在小学信息科技课程中的应用,70 名小学生被随机分为实验组(GAI-assisted ICT learning, GIL)和对照组(ICT Learning without GAI, ILG),分组完成"用数据讲故事"项目。研究使用滞后序列分析和 t 检验对多源数据进行分析。结果表明,GIL 班级表现出更加复杂和动态的行为序列,GAI 能够促进小学生信息科技课程的学习表现和感知。本研究为 GAI 有效融入小学教育提供了实践参考。

【关键词】 生成式人工智能; 信息科技课程; 人工智能能力; 小学教育; 学习分析

Abstract: The integration of Generative artificial intelligence (GAI) into K-12 education to foster students' AI competencies has become a critical issue. Information and communication technology (ICT) skills, as one of the core competencies of the 21st -century, make ICT courses a key context for developing AI competencies. This study explored the application of GAI in primary school ICT course through quasi-experimental. Seventy primary school were randomly divided into an experimental group (GAI-assisted ICT learning, GIL) and a control group (ICT learning without GAI, ILG), and engaged in completing the "Tell a Story with Data" project by each group. A combination of sequential analysis and t-test was employed to analyze multi-source data. The results indicated that the GIL class exhibited a complex and dynamic behavior sequence. Students' learning performance and perception had significantly improved in GIL class. The study provides practical reference for the effective incorporate GAI into primary education.

Keywords: Generative artificial intelligence, Information and science technology course, Artificial intelligence capability, Primary education, Learning analysis

1. 引言

生成式人工智能(Generative artificial intelligence,GAI)的快速发展正重塑教育模式,其通过个性化支持与多模态内容生成能力为教学注入新活力,但也伴随学生技术依赖、认知惰性等风险。2024年9月,联合国教科文组织颁布了全球首份《学生人工智能能力框架》。在K-12教育中融入GAI,以提高学生的人工智能能力成为重要议题。信息科技课程作为培养人工智能能力的重要场景,亟需整合GAI以突破教师难以及时响应学生个性化需求的传统课堂困境。小学信息科技课程强调实践与创新能力培养,例如通过设计思维和创客教育提升学生的高阶技能,但学生常因缺乏即时反馈陷入学习停滞(Soria等,2020)。此外,已有研究聚焦于GAI对学生学习成绩的影响,但很少关注学生的学习行为和感知变化。基于此,本研究通过准实验设计,对比GAI辅助(GIL班级)与无GAI辅助(ILG班级)的信息科技课程,自在探究:(1)两类班级学生在学习行为上有无差异?(2)两类班级学生在学习表现上有无差异?(3)GIL班级学生对GAI的感知有无变化?研究有助于教师在信息科技课程中有效融入GAI、努力改善信息科技课程体验、为提高学生人工智能能力做准备。

2. 研究方法

2.1. 研究对象

研究采用准实验设计,参与者是来自浙江省四年级的学生,年龄在10-12岁之间。浙江省信息科技教育发展强劲,因此选取该地区学校为研究点。研究随机抽取两个水平相近的班为研究对象(第一学期信息科技课程平均分无显著差异),分为实验班(N=37)和对照班(N=33)。授课内容参考2023年浙江教育出版社的四年级信息科技课本,GIL 班级和ILG 班级在学习完"数据"相关知识和技能后,需完成"用数据讲故事"的项目,包括设计统计表、将数据进行可视化并对数据进行解释。本研究在获得审查委员会的书面同意后进行数据收集与分析。

2.2. 研究过程

信息科技课程共十三周,每周一次课(40分钟)。课程前八周的教学活动主要包括教师向学生讲授信息科技课程中"数据"相关的知识和技能。第九周进行前测,第十周至第十三周学生需要完成用数据讲故事项目,第十四周进行后测。两组学习者在同一教师的指导下开展学习,教师采用相同的教学策略。在前测阶段,教师通过播放视频的方式让实验班学生了解 GAI 工具的功能和作用,学生在此基础上完成了 GAI 感知问卷。在实验阶段,学生随机分组,4-6人为一组。ILG 班级完成项目时不使用 GAI,但可借助在线网络资源,GIL 班级可以使用 GAI 辅助。本研究的 GAI 平台基于文心一言模型,学生可以在对话框中输入新问题,并获得 GAI 的反馈,与 GAI 展开多轮交互对话。在后测阶段,收集学习者用数据讲故事的项目作品,并按照评价量表进行打分。此外、收集 GIL 班级的 GAI 感知数据。

2.2. 数据收集和分析

研究采用混合式方法来收集数据,量化数据包括对 GIL 班级和 ILG 班级小组的项目作品评价、GIL 班级的前后测 GAI 感知问卷。质性数据包括 GIL 班级和 ILG 班级小组的屏幕录制和出声思考数据。针对问题一,研究通过录制学生电脑屏幕(包括音频出声思考数据)来记录学生的信息科技课程学习行为。每个班录制的视频时长为 280 分钟,共 560 分钟。我们采用重复编码程序进行了视频分析,该程序遵循了前人研究的编码框架进行改编(Sun 等, 2024; Liu 等, 2024),将学生的信息科技课程行为分为搜索者,翻译者,执行者,评价者四个过程。三名精通视频分析的研究者对视频进行初步评估后,协作讨论每个编码代表的含义,达成最终的编码安排(见表 1)。采用 GSEQ5.1 软件对学生的行为过程进行滞后序列分析。

表 1 ICT 行为编码框架

维度		行为	行为描述
搜索者	UT	Understanding task	学生转换到任务窗口或听老师讲解
	SAI	Search additional information	学生搜索浏览器或寻求同伴帮助
	ATR	Ask the teacher for course questions	学生问教师课程相关的问题
	AGR	Ask GAI for course questions	学生问 GAI 课程相关的问题
翻译者	RT	Repeating task	学生复述操作或教师提供的材料
	RFG	Reading feedback from GAI	学生停留在 GAI 界面阅读反馈
执行者	CFG	Creating follows the feedback of	学生根据 GAI 的反馈创建作品
	CIE	GAI	12 d la la 2 2 11 m / 2 12 m
	CIE	Creating in Excel	学生根据自己的理解创建作品
	UGI	Use GAI incorrectly	学生错误地使用 GAI
	NO	No operation	学生对任务没有任何操作
评价者	EP	Evaluate one's own project	学生用语言来评价自己的作品
	CG	Criticize GAI (CG)	学生批判 GAI 的回复等

针对问题二,我们通过评估学生的"用数据讲故事"作品来评估他们的学习表现。共收到 GIL 班级和 ILG 班级 14 项作品。研究参考 Lin 等(2020)的完整性(60分)、科学性(30分)、美观性(10分)三维评分框架,采用独立样本 t 检验来比较两个班级学生的学习表现。针对问题三,对 GIL 班级学生进行问卷前后测调研,问卷工具基于 Venkatesh 等学者(2000)提出的技术接受模型,包含人口学信息(3 题)及感知有用性、易用性、使用意向与态度(13 题,五点量表),信度 Cronbach's $\alpha=0.841$,研究采用配对样本 t 检验分析感知变化。

3. 研究结果

3.1. 两个班的行为模式及差异

研究通过滞后序列分析,绘制了 GIL 班和 ILG 班信息科技课程中学生的行为序列转换图 (见图 1)。图中每个节点表示学生一种行为,线条代表行为之间的显著性关系,z值的大小和线条的粗细表示行为序列的重要性,当z值大于 1.96 时,行为序列被视为具有统计学意义。

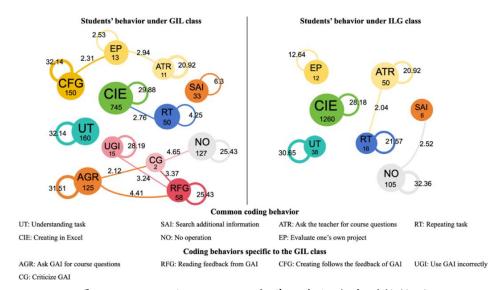


图 1 GIL 班级和 ILG 班级中学习者行为序列转换图

GIL 班级行为模式特征。研究共收到 GIL 班级学生的信息科技课程学习行为编码 1489 条,学生表现出 19 个重要的行为序列 (见图 1)。其中,学生在请教完 GAI 问题后阅读反馈 (AGR \rightarrow RFG, z = 4.41) ,对其进行批判性评价 (AGR \rightarrow CG, z = 2.12; RFG \rightarrow CG, z = 3.37) ,一部分学生在批判性评价后会存在短暂的无操作行为 (CG \rightarrow NO, z = 4.65); 学生在复述完教师提供的材料后,会根据自己的理解创作作品 (RT \rightarrow CIE, z = 2.76); 此外,学生在 GAI 指导下创作后会评价自己的作品 (CFG \rightarrow EP, z = 2.31) ,并请教教师问题 (EP \rightarrow ATR, z = 2.94);但是,也有学生提问了 GAI 无关课程的问题并花费时间阅读反馈 (UGI \rightarrow RFG, z = 3.24) ILG 班级行为模式特征。研究共收到 ILG 班级学生的信息科技课程学习行为编码 1487 条,学生表现出 8 个重要的认知序列(见图 1),其中,学生会在提问完教师问题后再次复述任务,进行更深入地理解(ATR \rightarrow RT, z = 2.04),一段时间的无操作后会去网络上搜查额外的学习资源或询问同伴(NO \rightarrow SAI, z = 2.52)。

两个班级行为模式差异。根据 GIL 和 ILG 班级学生的学习行为序列模式,可以观察到以下不同点: (1) 相比 ILG 班级, GIL 班级具有更丰富的行为序列,表现出更复杂的行为过程。(2) GIL 班级具有更多元的信息获取渠道,比起对照组在教师和网站获取信息外,还通过提问 GAI 问题,并阅读 GAI 的反馈来获取即时反馈。(3)实验组在行为过程中具有更自由的思考空间,例如,学生在按照 GAI 的反馈创作作品后,会地反思自己的作品质量(CFG→EP)。

3.2 GAI 对小学生学习表现的影响

独立样本 t 检验显示, GIL 班级(M=85.61, SD=8.80)的总体作品质量显著优于 ILG 班级(M=79.30, SD=12.59)(t=2.401, p=0.019)。具体而言, GIL 班级在作品完整性维度得分显

著更高(M=51.58 vs. 47.80, t=2.415, p=0.019),而科学性和美观性维度虽均值占优(科学性: t=1.85, p=0.068;美观性:t=0.922,p=0.360),但未达显著差异水平。

3.3 小学生对使用 GAI 的感知

配对样本 t 检验显示,GIL 班级学生对 GAI 的整体感知后测显著提升(t=-2.177, p=0.036),尤其体现在感知易用性维度(t=-2.57, p=0.014)。然而,感知有用性(p=0.240)、使用意向(p=0.256)及态度(p=0.124)三个维度未发生显著变化,表明学生虽认可 GAI 的操作友好性,但尚未形成深层价值认同与持续使用动机。

4. 研究结论及启示

研究通过比较 GAI 辅助的学习和没有 GAI 辅助的学习,考察和评估了两种不同的学习形式对小学生信息科技课程学习行为、表现和感知的影响,并为未来人工智能能力的培养提供指导,根据研究结果,得出以下结论:第一,GIL 班级学生表现出更加复杂和动态的行为序列,多数学生学习积极性较强。第二,GAI 能够促进小学生信息科技课程的学习表现。第三,GIL 班级学生对 GAI 的使用持积极态度,在总体感知、感知易用性方面存在显著影响。GAI 的介入需匹配小学生的认知发展阶段,教师应引导小学生在信息科技课程中规范使用 GAI,提高小学生的人工智能能力。此外,教师可通过三层支架降低技术使用门槛:首先,示范性支架,教师以"思维外显化"方式展示 GAI 工具的操作逻辑,通过展示自己的思考过程和操作步骤。其次,任务单支架。任务单上教师需要让学生明确学习目标,并将任务细化成易于理解的小步骤,以便学生能够循序渐进地完成任务。最后,反思性支架。设置元认知提示,培养学生对人工智能输出的批判性思考能力,避免技术依赖导致的思维惰性。

参考文献

- Lin, L., Shadiev, R., Hwang, W. Y., & Shen, S. (2020). From knowledge and skills to digital works: An application of design thinking in the information technology course. *Thinking Skills and Creativity*, *36*, 100646.
- Liu, M., Zhang, L. J., & Biebricher, C. (2024). Investigating students' cognitive processes in generative AI-assisted digital multimodal composing and traditional writing. *Computers & Education*, 211, 104977.
- Soria, S., Gutiérrez-Colón, M., & Frumuselu, A. D. (2020). Feedback and Mobile Instant Messaging: Using WhatsApp as a Feedback Tool in EFL. *International Journal of Instruction*, 13(1), 797-812.
- Sun, D., Boudouaia, A., Zhu, C., & Li, Y. (2024). Would ChatGPT-facilitated programming mode impact college students' programming behaviors, performances, and perceptions? An empirical study. *International Journal of Educational Technology in Higher Education*, 21(1), 14.
- Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. *Management Science*, 46(2), 186 204.