Investigating the Relationships among Virtual Reality Features, Technology Acceptance and Learning Performance in VR-assisted Language Learning

Bowen Jing ¹, Xiaoshuang Zhang ¹, Jiarong, Chen ¹, Lin Luan ^{1*}

¹ School of Humanities, Beijing University of Posts and Telecommunications, Beijing, China

* luanlin@bupt.edu.cn

Abstract: Virtual reality (VR) technology characterized with real-time interactivity and strong sense of presence has emerged as an effective tool for language education. The importance of VR application in language learning has been widely acknowledged. However, the role of VR features in English as a foreign language (EFL) students' technology acceptance and learning outcomes remains under-investigated. To fill the gap, this research explored the intricate relationship among VR features (i.e., interactivity and presence), technology adoption (i.e., perceived ease of use, perceived usefulness and continuance intention) and students' learning performance in VR-assisted language learning based on the theoretical framework of technology acceptance model (TAM). Data collected from 254 undergraduates was analyzed through structural equation modelling. The findings demonstrated that interactivity and presence positively predicted EFL learners' perceived ease of use and perceived usefulness of the VR platform, which further facilitated continuance intention. Furthermore, students' continuance intention served as a pivotal antecedent of learning performance. The results encourage technological experts to promote the design of the VR platform and EFL teachers to unleash the full potential of VR properties in language courses.

Keywords: virtual reality (VR), EFL learner, VR features, technology acceptance model (TAM), learning performance

1. Introduction

With the technology advancement in recent years, virtual reality (VR) has opened up a new avenue for language learning and teaching by providing an interactive, authentic and supportive environment (Man et al., 2024). Virtual reality is defined by Burdea and Coiffet (2003) as "a highend user-computer interface which involves real-time simulation and interactions through multisensory channels". The situated interactive scenarios and strong feeling of presence embedded in VR-assisted instructional approach have been proved as essential in driving students' linguistic improvement (Luan et al., 2024). Considering the powerful affordance of VR in language learning, it is imperative to figure out how VR properties empower learning attitude and performance in an EFL setting.

2. Literature Review

2.1. VR Features

VR technology possesses three principal characteristics including immersion, interactivity and a sense of presence (Liu et al., 2023). Interactivity concerns the VR platform's capability of responding to learner inputs while presence describes a psychological sensation of being there in an unreal environment generated by VR systems (Makransky & Petersen, 2019). In a cost-effective and space-saving desktop VR environment, immersion is less influential in driving learning success

(Huang et al., 2016). This being the case, this research views interactivity and presence as decisive functional features of the desktop VR-assisted language learning context.

2.2. Technology Acceptance

Technology acceptance model (TAM) proposed by Davis (1989) provides a theoretical framework for educators to explain students' adoption of novel technologies in computer-assisted language learning (Alvi, 2024). Perceived ease of use (PEU), perceived usefulness (PU) and continuance intention (CI) comprise core elements of TAM (Huang & Liaw, 2018). In VR-assisted learning contexts, PEU entails the degree to which students believe that using VR platforms is free of effort; PU pertains to the degree to which students believe that applying the VR platforms will promote learning outcomes and CI involves students' readiness to use VR platforms in future learning activities (Man et al., 2024). Based on TAM, individuals' continuance intention to use an advanced technology is shaped by perceived ease of use and perceived usefulness of it (Davis, 1989). Additionally, students with higher continuance intention are more likely to find the academic benefit brought by VR technology, thus exhibiting enhanced learning performance (Guo et al., 2024).

2.3. VR Features, Technology Acceptance and Language Learning Performance

VR technology is capable of shaping students' learning attitude and performance due to its unique features of interactivity and presence (Liu et al., 2023). For instance, according to Huang et al.'s (2016) study, medical students would perceive the VR system as user-friendly when it enabled real-time and authentic interactions. In a similar vein, Alvi (2024)'s investigation revealed that a strong sense of presence provided by immersive VR learning environment was conducive to students' perceived ease of use as well as perceived usefulness, which stimulated their willingness to continue utilizing VR for English learning. Despite the close association between VR properties and technology adoption, how VR features contribute to students' technology acceptance and learning performance in a specific desktop VR-assisted EFL learning context keeps crucial yet under-investigated. In response, drawing on extant literature, we proposed hypotheses as follows:

- H1 (a-b). VR features (i.e., interactivity and presence) positively predicts perceived ease of use.
- H2 (a-b). VR features (i.e., interactivity and presence) positively predicts perceived usefulness.
- H3. Perceived ease of use positively predicts continuance intention of VR-assisted language learning.
- H4. Perceived usefulness positively predicts continuance intention of VR-assisted language learning.
- H5. Continuance intention of VR-assisted language learning positively predicts learning performance.

3. Method

3.1. Research Context and Participants

The present study was conducted at a comprehensive university in mainland China with 258 undergraduates (75.2% male, aged from 17 to 21) involved. All of the participants attended to a 16-week English course delivered in a VR-assisted teaching approach. Specifically, students acquired English on a self-developed desktop VR platform named *Situated English in Virtual Reality*. This

VR platform is capable of simulating real-life scenarios at international airports with the purpose of enhancing EFL learners' English application and communicative competence.

3.2. Instruments

Revised from Luan et al.'s (2024) and Huang et al.'s (2016) well-developed survey, a VR-assisted language learning questionnaire was designed to gauged VR features (i.e., interactivity and presence) and technology acceptance factors. All of the items were presented in the form of five-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree) and translated into Chinese to avoid participants' misunderstanding. Additionally, students' learning performance was evaluated by the final-term examination which took the form of National College English test, a standardized exam to assess EFL learners' English proficiency in China.

3.3. Data Collection and Analysis

After removing four cases with missing value, a total of 254 valid questionnaires were collected. The data analysis procedure encompassed two steps. First, confirmatory factor analysis (CFA) was conducted with the assistance of SPSS and AMOS software in order to guarantee the validity and reliability of each variable. Second, structural equation model (SEM) was established and operated in AMOS to test the hypothesized relationship among VR features, technology acceptance components and learning performance in VR-assisted language learning.

4. Results

4.1. Reliability and Validity Analyses

CFA was performed to verify the reliability and validity of each construct. As shown in Table 1, the cronbach's α fluctuated between 0.91 and 0.96, indicating desirable internal consistency reliability of the adapted questionnaire. Furthermore, factor loading (FL), composite reliability (CR) and average variance extracted (AVE) were employed to measure the convergent validity of variables. The CFA results demonstrated that FL, CR and AVE of all the five constructs exceeded the benchmark of 0.50, 0.70 and 0.50 respectively, marking satisfactory convergent validity. In addition, the majority of correlation coefficients between latent variables were lower than the square root of AVE (see Table 1), thus showing acceptable discriminant validity.

Table 1. Construct reliability and validity.

Tuble 1. Construct renability and validity.											
Constructs	N	1	2	3	4	5	6	FL	α	CR	AVE
1. Interactivity	4	0.90						0.89- 0.92	0.95	0.94	0.81
2. Presence	3	0.86	0.90					0.90- 0.92	0.93	0.94	0.81
3. Perceived ease of use	3	0.88	0.85	0.87				0.82- 0.93	0.91	0.91	0.76
4. Perceived usefulness	4	0.88	0.86	0.81	0.92			0.87- 0.93	0.95	0.95	0.84
5. Continuance intention	4	0.81	0.78	0.84	0.82	0.92		0.90- 0.94	0.96	0.96	0.84
6. Learning performance	-	0.27	0.26	0.28	0.27	0.33	-	-	-	-	-

Note. N: item number, α: Cronbach's alpha. The bolded diagonal values are the square roots of AVE for the constructs. The off-diagonal value are the inter-correlations between variables.

4.3. Path Analysis

A structural equation model was established to examine the hypothesized relationships. The proposed model displayed favorable structural fit (i.e., x^2/df =2.50, GFI=0.87, CFI=0.96, NFI=0.94, IFI=0.96, RMSEA=0.077, SRMR=0.037). Path analysis findings revealed that interactivity (β =0.59, p<0.001) and presence (β =0.34, p<0.001) exerted positive effect on perceived ease of use, which backed up H1a and H1b. Meanwhile, perceived usefulness was also positively influenced by interactivity (β =0.52, p<0.001) and presence (β =0.42, p<0.001), aligning with H2a and H2b. Perceived ease of use (β =0.51, p<0.001) and perceived usefulness (β =0.40, p<0.001) collaboratively contributed to continuance intention, which confirmed H3 and H4. Moreover, continuance intention positively predicted students' learning performance in VR-assisted language learning (β =0.33, p<0.001), which provided empirical evidence to H5.

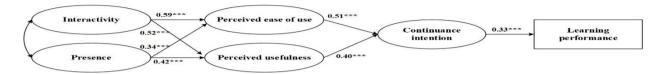


Figure 1. Verification of the hypothesized model.

5. Discussion and Conclusion

The current research explored the interplay among VR features (i.e., interactivity and presence), technology acceptance factors (i.e., perceived ease of use, perceived usefulness, continuance intention) and learning performance in VR-assisted language learning. The prediction of interactivity in perceived ease of use and perceived usefulness confirmed in this study is congruent with Huang and Liaw's (2018) statement, indicating that authentic interaction with VR characters bolster students' confidence in solving technical problems and motivate students to enjoy the VR learning experience. In addition, the results also verified the contribution of presence to students' VR adoption, which echoes Alvi (2024)'s argument that students who feel present in the real-life communicative scenarios tend to recognize the comfort and effectiveness of utilizing VR technology in language learning. Furthermore, both perceived ease of use of perceived usefulness positively predicted continuance intention, which aligns with TAM tenet that the utility of VR technology can arouse students' willingness to engage in VR-assisted English learning activities (Man et al, 2024). Students with stronger intention to use the VR technology for future learning are disposed to gain deeper understanding of learning material and better knowledge acquisition (Guo et al., 2024). In light of the importance of VR features in empowering EFL learning, technology developers are encouraged to integrate more diversified real-life scenarios and interactive elements into platform design (Makransky & Petersen, 2019). Meanwhile, EFL instructors are recommended to take full advantage of the VR properties and incorporate VR-assisted teaching as a feasible complement to traditional on-site instruction (Luan et al., 2024). Several research limitations should be acknowledged. This research recruited students from a single university and relied on selfreported data. Future studies will enroll participants with diverse cultural backgrounds and employ multiple data analysis methods (i.e., interview) to triangulate the findings.

Acknowledgements

This paper was part of the project of "Research on Innovation and Application of Foreign Language Teaching Mode Empowered by Virtual Simulation Experiments in Colleges and Universities in the Context of New Liberal Arts" supported by 2024 Higher Education Research Project of China Association of Higher Education (Grant No. 24WY0303).

References

- Alvi, I. (2024). Investigating students' adoption of virtual reality for L2-learning in India. *Education and Information Technologies*, 29(7), 8035-8056.
- Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology (2nd ed.). John Wiley & Sons.
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *Management Information System Quarterly*, 13(3), 983–1003.
- Guo, H., Ma, F., & Zhou, Z. (2024). Validation of technology acceptance model for virtual reality usage in collaborative learning to enhance learner performance. *Innovations in Education and Teaching International*, 1-15.
- Huang, H. M., Liaw, S. S., & Lai, C. M. (2016). Exploring learner acceptance of the use of virtual reality in medical education: a case study of desktop and projection-based display systems. *Interactive Learning Environments*, 24(1), 3-19.
- Huang, H. M., & Liaw, S. S. (2018). An analysis of learners' intentions toward virtual reality learning based on constructivist and technology acceptance approaches. *International review of research in open and distributed learning*, 19(1).
- Liu, Z., Yu, P., Liu, J., Pi, Z., & Cui, W. (2023). How do students' self-regulation skills affect learning satisfaction and continuous intention within desktop-based virtual reality? A structural equation modelling approach. *British Journal of Educational Technology*, 54(3), 667-685.
- Luan, L., Hwang, G. J., Yi, Y., Lu, Z., & Jing, B. (2024). The effects of a self-developed virtual reality environment on college EFL learners' vocabulary learning. *Interactive Learning Environments*, 1-12.
- Makransky, G., & Petersen, G. B. (2019). Investigating the process of learning with desktop virtual reality: A structural equation modeling approach. *Computers & Education*, 134, 15-30.
- Man, S. S., Fang, Y., Chan, A. H. S., & Han, J. (2024). VR technology acceptance for English learning amongst secondary school students: role of classroom climate and language learning anxiety. *Education and Information Technologies*, 1-25.

数字赋能终身学习的研究热点与阶段特征——基于中国知网 2014-2024 年的文

献可视化分析

Research Themes and Stage Characteristics of Digitally Enabled Lifelong Learning --Literature visualisation analysis based on CNKI 2014-2024

田艾灵¹, 叶建宏^{2*}

¹²北京师范大学职业与成人教育研究所

ailing tian@mail.bnu.edu.cn; * jianhong.ye@bnu.edu.cn

【摘要】数字技术与教育系统的融合创新正推动我国教育的数字化转型。首个数字化终身学习联盟在我国启动,将大力推动我国全民终身学习体系的构建。探究学术界对于数字赋能终身学习的研究有助于深入理解当前数字技术与终身学习的融合现状。运用信息可视化软件 CiteSpace 对中国知网数据库中的 174 篇关于数字赋能终身学习的研究文献进行分析,结果显示,已形成主要的学者网络与研究机构;研究热点主题体现在数字赋能终身学习的顶层设计、现实路径与特定群体中。未来,对数字赋能终身学习的研究将会持续增长且会形成更加丰富的知识体系。

【关键词】 数字技术;终身学习; 文献计量; 可视化分析; CiteSpace

Abstract: The innovation of digital technology and the education system are driving the digital transformation of education in China. Exploring academic research on digitally-enabled lifelong learning helps to gain a deeper understanding of the current status of the integration of digital technology and lifelong learning. CiteSpace was used to analyse 174 research documents on digitally enabled lifelong learning in the CNKI. The results show that a network of scholars and major research institutes, have been formed; the hot topics of the research are reflected in the top-level design of digitally empowered lifelong learning, the real-life paths, and specific groups. In the future, research on digitally enabled lifelong learning will continue to grow and form a richer body of knowledge.

Keywords: Digital technology, Lifelong Learning, Bibliometrics, Visual Analytics, CiteSpace

1. 前言

随着元宇宙、区块链、AR(Augment Reality,增强现实)、VR(Virtual Reality,虚拟现实)等新一代数字技术的发展与应用,数字化转型已成为驱动人类社会走向智能化、数字化的世界性主题。数字技术与教育系统的融合创新,正推动我国教育信息化向数字化转型跃升(胡钦太等,2024)。2015年,习近平总书记在第二届互联网大会上提出,要推进"数字中国"的建设;2021年,教育部首次提出了"教育数字化转型"战略。可见,数字赋能教育已被视为构建高质量教育体系的必经之路。党的二十大报告指出,应"建立全民终身学习的学习型社会",这为我国完善全民终身学习体系指明了方向。2024年10月,全球首个数字化终身学习联盟在我国上海启动,这将进一步推进我国终身学习数字化转型、赋能学习型社会建设,并为公民的终身学习参与提供有力的组织保障。学术界对于数字赋能终身学习的研究随着数字技术的发展与政策文本的导向而不断增加,数字赋能终身学习正在成为一个新

的学术关注点和增长点,尤其是在成人教育领域。本研究聚焦于 2014-2024 年终身学习领域的数字技术研究,借助可视化软件 CiteSpace 梳理其近十年的研究热点,试图深入理解前沿数字技术对于终身学习理念与方式等的具体影响。

2. 数据来源与研究方法

2.1. 数据来源及分析

选取中国知网数据库的中文社会科学引文索引(Chinese Social Sciences Citation Index,简称 CSSCI)与北大核心(全称为《中文核心期刊要目总览》)的文献来源,对数字赋能终身学习的研究文献进行搜索,不含学位论文、会议、报纸等文献类别。检索主题和标题为"终身学习"与"数字+元宇宙+AR+VR+区块链",时间跨度为 2014 年 1 月 1 日至 2024 年 12 月 1 日,在 CiteSpace 软件中经过去重、清洗,共得到研究文献 174 篇。

从时间上看,整体上,在2014-2024年这十年期间,数字赋能终身学习这一主题的发文数量总体上呈增长态势。虽然2014-2018年的发文量均低于5篇,但从2019年起,年均发文量均稳定在10-45篇区间。可见,这一主题的研究热度一直在持续,并在2020年与2023年分别出现两个小的波峰,分别为15篇与42篇。其中虽有回落,但总体趋势是不断增长的,并在2023年达到最大值,42篇(见图1)。

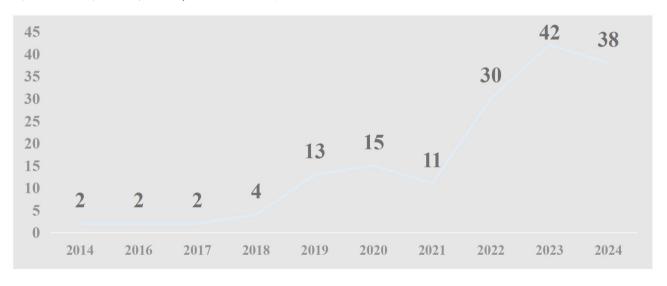


图 1 数字赋能终身学习的研究主题发文量时间分布(2014-2024年)

笔者分析,这两个小的波峰得益于数字技术的发展与国家宏观战略部署。首先,由于2020年是新冠疫情之年,基于数字技术的远距离学习成为成人获取知识与技能的主要方式;加之在2019年与2020年,教育部先后出台文件《关于服务全民终身学习促进现代远程教育试点高校网络教育高质量发展有关工作的通知》(教育部,2019)与《2020年教育信息化和网络安全工作要点》(教育部,2020),并且亚马逊网络服务将区块链技术民主化、国内虚拟现实产业市场(AR和VR)逐渐扩大、"元宇宙"概念横扫全球,2020年"终身学习+数字技术"主题有一个爆发期。其次,在2022年,中央网信办、教育部等四部门联合印发《2022年提升全民数字素养与技能工作要点》(中央网信办等,2022),提出促进全民终身数字学习、上海开放大学建立OMO智慧学习中心元宇宙"慧学空间"、基于区块链技术的成人学习认证、记录与学习学分的记录与转移、在南京市的全民终身学习活动周上的VR

数字课程的亮相等,这都为学者研究终身学习领域下的数字技术奠定了技术手段与政策文本基础。

从来源出版物分布看,成人教育与职业教育领域的期刊为主要期刊来源,没有计算机领域相关的期刊来源。在这 174 篇文献所在的期刊中,《成人教育》为该主题的主要阵地,发文占比量为 13.79%,其次依次为《中国职业技术教育》9.20%、职业技术教育 8.05%、《远程教育杂志》7.47%、《中国电化教育》5.75%以及其他期刊。

从发文内容看,《成人教育》与《中国职业技术教育》主要通过引入国际(包括欧盟、澳大利亚、爱沙尼亚)的经验,为我国学习型社会的构建提供理论依据与实践进路;《职业技术教育》侧重于数字技术如何赋能成人的技能教育,并介绍了美国、欧盟、以及我国某一城市的个案经验;《中国电化教育》则是关注教育数字化转型的策略与路径,以及数字技术在教育中的应用探索;《远程教育杂志》则是采用特定视角、具体项目、不同群体以剖析数字技术在教育中的运用。

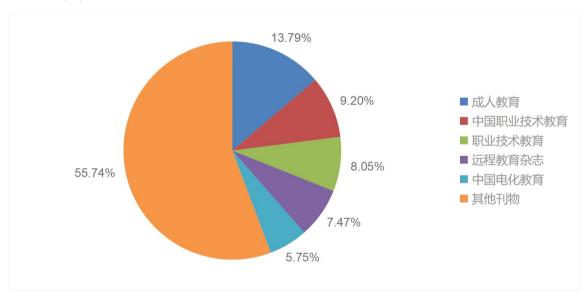


图 2 数字赋能终身学习的出版物分析(2014-2024年)

2.2. 研究工具及方法

本研究使用 CiteSpace 6.3.R1 可视化软件与知网自带的可视化分析功能作为研究工具。 CiteSpace 是由一款基于 Java 语言开发的信息可视化软件, 主要通过寻径网络算法进行计量, 以探寻学科领域演化的关键路径及知识转折点, 并通过一系列可视化图片的绘制来形成对学科演化潜在动力机制的分析和学科发展前沿的探测。(陈悦等, 2014)

本研究选取以上两个工具从以下两个方面对搜集到的文献数据进行可视化分析,以了解该领域目前的研究现状。一方面,通过对作者共现网络、作者机构分布来分析我国该领域的关键作者和主要研究机构,以了解其知识基础。另一方面,通过对文献中的关键词进行共现和聚类分析来探究数字赋能终身学习的研究热点。具体参数值包括:研究文献时间范围是2014-2024年11月,时间切片(Year Per Slice)为1年。关键词聚类分析中的节点类型是关键词。节点阈值在共现分析中为Top N=50。

3. 结果与分析

3.1. 知识基础

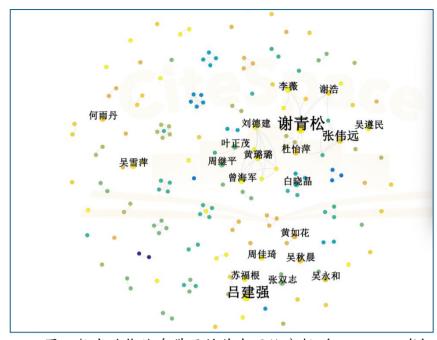


图 3 数字赋能终身学习的作者网络分析(2014-2024年)

在 CiteSpace 分析中,作者共现数据能够反映该领域影响力较大的关键学者,他们的研究对该领域的知识演进起到重要作用;在知网的可视化分析工具中,文献来源机构分布可以呈现该领域的主要研究阵地,这些文献与研究场所构成该领域的知识基础。

通过对检索到的174篇文章进行作者合作网络分析发现,该领域中,主要形成了以重庆 开放大学的谢青松、曲阜师范大学的吕建强为核心的两位作者,呈现出低凝聚、高分散的特 征。其中,谢青松主要关注终身学习中的学习成果认证、资历框架与学分银行等,并与11 位学者有过较为紧密的合作,包括北京师范大学的张伟远、北京师范大学的谢浩、广东省教 育研究院的杜怡萍等;吕建强则是聚焦于终身学习中的数字化转型、数字赋能与技能人才培 养等领域,并与教育部教育管理信息中心的苏福根学者有过较为紧密的合作。

从知网的可视化分析中,作者的来源机构主要包括师范大学、开放大学、职业院校等。可见研究数字赋能终身学习主题的学者以教育学、终身教育机构、职业教育院校的学术背景为主,来自人工智能背景的学者较少。其中,北京师范大学的学者与华东师范大学的学者占比最高,分别占到了7.56%。这种学科分布状况在一定程度上反映了当前数字赋能终身学习领域的研究格局。师范大学凭借其深厚的教育理论底蕴和广泛的教育资源网络,在该领域的理论构建与实践探索方面发挥着引领性作用。北京师范大学与华东师范大学独占鳌头,彰显了其在数字技术与终身学习融合研究方向上的先发优势和持续投入。然而,人工智能背景的学者参与不足可能会导致在数字技术创新应用、终身学习在线平台等关键技术环节的研究深度受限。

3.2. 研究热点

关键词是文献研究的精炼与浓缩,对文献中出现频率高的关键词进行分析可以反映某一领域的研究热点。本研究对所搜集文献的关键词进行共现分析。同时在关键词共现的基础上进行关键词聚类。关键词聚类后的关键词节点共215个,节点连线共491条。选择前9个聚类,深入阅读不同聚类包含的具体研究内容,结合其中的高频关键词进一步整合以探索数字

赋能终身学习研究的热点主题,得出"数字赋能终身学习的顶层设计"、"数字赋能终身学习的现实路径"、"数字赋能终身学习的特定群体"三类热点主题(见表 1)。

		7C 1 X	1 101100	() 1 1 4 4	770余人 7707000000000000000000000000000000
维	聚	名称	节点	关键词节	高频关键词
度	类		值	点	
顶	0	终身学习	0.796	43	可持续发展、学习型城市、联合国教科文组
层					织、数字技术
设	3	学习型大国	0.954	23	人工智能、全民终身学习、教育数字化转型、
计					教育数字化
	4	教育信息化	0.934	18	数字胜任力、终身学习体系、学习资源、学习
		2.0			型社会
	8	学习场景	0.997	5	高质量发展、开放大学、数字化改革、数字赋
					能
现	1	区块链	0.916	34	学习成果认证、学分银行、融合、资料框架
实	5	区块链技术	0.95	13	互联网时代、体系构建、开放徽章、信任机制
路	6	智慧教育	0.906	13	数字化、应用、需求型政策、环境型政策
径					
特	2	高等教育	0.884	28	协同创新、职业教育、数字素养、技能型人才
定	9	信息技术	0.985	5	老龄化社会、积极老龄化、比较研究、数字游
群					戏
体					

表 1 数字赋能终身学习的研究聚类与热点主题(2014-2024年)

3.2.1 数字赋能终身学习的顶层设计

这一主题包括 4 个聚类,囊括终身学习、学习型大国、教育信息化 2.0、学习场景领域,涉及国际层面与我国政府的一些宏观教育目标与教育理念。国际层面的包括联合国所提出的可持续发展理念、教科文组织提出与学习型社会的相关倡议;我国政府层面的则包括我国学习型大国建设、教育信息化 2.0 时代中技术与终身学习的关系。从宏观层面探讨数字与终身学习的关系,是目前数字赋能终身学习研究的重点所在。

东北师范大学的学者常飒飒与王占仁通过对欧盟在 2006 年与 2018 年发布的《欧盟终身学习核心素养建议框架》的比较分析,发现欧盟仍将个体终身学习的核心素养置于知识、技能与态度这三大维度中。并且欧盟在 2018 年的文本中,更加注重终身学习这一概念与现实的融合,包括强调积极的学习环境以及多样化的学习方法、终身学习中教师教育的重要性、开发适用于素养发展的评价与评估方式。欧盟提出这三个重要支撑条件,以为个体终身学习能力的发展提供环境支持、外部激励与制度保障。(常飒飒和王占仁,2019)

苏州大学的学者朱永新与杨帆认为,教育数字化作为"数字中国"战略的重要任务,意味着数字技术作为杠杆,撬动教育与社会的整体变革,并促进面向全社会的智慧教育平台的完善。具体而微,数字技术将通过以下四种方式推进全民终身学习与学习型社会的形成:智慧教育公共服务平台、基于虚拟技术的沉浸式学习、促进终身学习的学分银行、提供综合服务的智慧图书馆与整合网络资源的数码社区。(朱永新和杨帆,2023)

华东师范大学的学者吴旻瑜与武晓菲基于对亚太经合组织文件《经合组织成员国职业所面临的自动化风险》与我国教育部文件《教育信息化 2.0 行动计划》的文本分析提出,教育技术不仅会遵循技术自身的发展逻辑,同时也会遵循人类个体成长的社会性要求的变迁逻辑。由于技术变化所引起的培训需求和潜在的不平等,导致终身学习成为个体的、关乎现实利益

的选择。通过信息化的技术与手段,民众的终身学习力能够提高,并将带动劳动者的技能与素养提升。(吴旻瑜和武晓菲,2018)

西南大学的学者刘革平、高楠等首次界定了教育元宇宙的概念,并提出教育元宇宙作为独立于现实世界的"第二世界",能够整合各类教育形态、教育要素、教育资源,并促进教育资源公平与教育机会均等。其中,教育元宇宙最重要的是能够打破不同教育平台的壁垒,区块链有利于解决学分的信用问题,促进学分互认。这意味着教育元宇宙能够促进学习成果之间难以认证与转化的难题,实现同一个体、不同类型的学习成果的等值融通(刘革平等,2022)。

3.2.2. 数字赋能终身学习的现实路径

这一主题包括三个聚类,囊括区块链、区块链技术、智慧教育领域,主要涉及数字赋能 终身学习的技术支撑,以区块链为主要技术,辅之以其他人工智能技术,包括VR、AR等。

天津大学的学者张双志与张龙鹏将区块链视为终身学习体系建设的基础框架,并以哈贝马斯、海德格尔、马克思等哲学家的理论为切口,分析区块链的点对点传输、分布式账本、共识算法、链式时间与智能合约的特性在教育治理结构中的创新。并基于区块链的技术逻辑,提出区块链在教育治理结构中能够促进教育主体间的共商协作、教育权力的多元平等、教育话语的公共透明、教育行动去信任化与教育法治自动履约。(张双志和张龙鹏,2020)

北京开放大学的学者吴莎莎、白晓晶等将数字徽章与区块链技术相结合,认为数字徽章虽然能体现学习者的学习经历,但其认可度与真实性的却受到质疑。而区块链具有安全加密、不可撤销等优势,如若将数字徽章与区块链技术相融合,个体的学习过程将具有更高的可信度与可靠性。此外,两者的融合不仅能有效推动正式与非正式学习的学习成果认证与学分转换,而且也便于学习者在应聘时通过数字徽章向其展示自己的学习轨迹与技能,从而获取更契合自身能力的岗位。(吴莎莎等,2018)

北京师范大学与中国教育报的学者刘德建、曾海军等基于对 2023 年全球智慧教育大会的思考,提出智慧教育作为数字时代新的教育形态,是推动全民享有终身学习机会的必然选择。智慧教育,以众创共享的知识观、智联建构的学习观、融通开放的课程观与人机协同的教学观为特征,以可堆叠模块与微证书、个人数字档案的教育数据、构建元宇宙教育平台等为表征,将惠及所有的地球公民。(刘德建等, 2024)

3.2.3. 数字赋能终身学习的特定群体

这一主题包括两个聚类,囊括高等教育、信息技术领域,主要涉及数字技术在高等教育 机构中培养技能型人才与推动老年群体的积极老龄化。对不同群体的终身学习能力的关照, 体现了终身学习"从一而终"的特点。

广东交通职业技术学院的学者李旭东与曾艳英基于区块链去中心化的特性,提出了基于区块链技术的终身职业教育体系的构建思路。终身职业教育体系能够打破中心机构(即正规学校)的垄断格局,面向全民参与和实现教育公平,促进开放式与分布式职业教育活动,以支撑个体整个职业生涯的规划与发展。此外,通过构建终身职业教育学信数据库、应用体系(学习证书认证系统、职业教育资源库等)与学习服务平台等,区块链支撑的终身职业教育提体系得以完善。(李旭东和曾艳英、2018)

北京师范大学与首都师范大学的学者乔爱玲与张伟远等对互联网时代老年群体的终身学习现状进行了调查,是本主题中少见的实证研究范式。研究人员通过对北京市 2500 名年老者的问卷调查发现,老年群体终身学习的主要动机是保持身心健康。由于老年人在家庭中更多地承担"照顾者"的身份,导致老年群体缺乏参与教育与培训的时间;其次,社区大学、

老年大学以及开放大学的班级与名额较少,这也限制了老年人参与到终身学习的过程中来。 (乔爱玲等,2019)

3.3.综合讨论

基于对我国数字赋能终身学习的研究主题与阶段特征分析,可发现当前这一领域的研究范式呈现出向顶层设计、现实路径、特定群体演进的趋势。展望未来,各研究方向在时空维度上的交叉融合将会催生新的研究主题,进而使数字赋能终身学习的研究更丰富化。但目前的研究也存在以下两方面的不足。

首先是现有文献的研究内容上存在着"重理念、轻实践"的倾向。基于对该领域的研究 热点发现,我国研究者们多聚焦于政策层面的宏观探讨与技术可行性的理论分析,例如对我 国《数字中国》战略、《教育信息化 2.0 行动计划》政策落地的探讨,以及对教育元宇宙的 概念、区块链技术在终身学习领域中的可行路径分析。但对数字技术在终身学习中的教学实 践评估与监测关注不足,具体表现为:当前学术界对于教育元宇宙、区块链技术等在终身学 习者的技术支持程度、学习效果监测等微观层面的系统性研究较为匮乏。

其次是现有文献的研究方法呈现出"重思辨、轻实证"的现状。通过对该领域的研究热点分析发现,尽管目前学界关注数字赋能终身学习的现实路径与特定群体,但研究者大多使用理论思辨这一主导研究方法,几乎没有研究者使用质性或量化的实证研究方法探讨终身学习者使用数字技术进行学习的动机、体验以及学习效果。少量学者关注老龄终身学习者的数字学习体验,但仅停留在对于数据的描述性统计分析中,缺少进一步的相关性分析。这种思辨探讨为主,实证研究不足的研究方法呈现出明显的非均衡态势,制约了该领域研究结论的科学性与实践指导价值。

4. 结论

运用 Citespace 对 2014-2024 年 12 月的数字赋能终身学习的研究文献进行可视化分析,可以看出国内学术界对于该主题的研究呈现出内在的发展规律与阶段性特征。对其进行进一步分析可以深化对该主题的研究的认识,为未来参与和解读终身学习中的数字技术提供重要参考。

第一,从发文量看,国内学术界对数字赋能终身学习的研究保持增长态势,虽然在2014-2024年的某些年份偶有下降,但是从整体上来看,研究呈持续增长态势,尤其是在2023年达到最大值。未来伴随着数字技术取得新的突破、我国数字强国与教育数字化转型的宏观战略,这一趋势仍将持续。

第二,谢青松与吕建强两位学者、北京师范大学与华东师范大学这两大"985"头部研究机构奠定了数字赋能终身学习研究的知识基础。从某种意义上说,头部师范大学的学者垄断了该领域的知识生产。这是高等教育发展的"中心-边缘"结构(菲利普·C·阿特巴赫,2001)在学术研究领域的再现。这种结构是由多种原因造成的,如北京师范大学、华东师范大学机构的学者长期以来一直就在知识生产领域处于强势地位,它们具有丰富的研究资源与成熟的研究体系。因此,对于非师范大学、开放大学等研究机构的学者来说,其重要任务应是产出更高质量的学术成果,提升自身对学科领域的贡献度。

第三,数字赋能终身学习的研究呈现出多元化的发展方向。首先,在研究热点主题上,数字赋能终身学习的顶层设计自始至终都是学者的主要聚焦点。在这一领域的学者主要通过分析党和国家的战略性文件,来提出数字技术与终身学习相融合的可能性与必然性。其次,数字赋能终身学习的现实路径也是推进学习型社会、构建全民终身学习体系的重要环节。已

有学者主要围绕着具体的数字技术展开讨论。通过区块链技术、数字徽章等来实现不同学习 形式之间的学分转换与互认。最后,数字赋能终身学习的特定群体也广受学者关注。在这一 领域中,已有学者主要围绕着高等教育中的技能人才的终身学习能力培养与终身学习的机会 获得、老年群体的终身学习参与而展开。

本研究基于 CiteSpace 文献计量分析, 系统梳理了 2014-2024 年数字赋能终身学习领域的研究热点与阶段特征。研究发现, 当前研究主要聚焦于三个核心议题: 数字赋能终身学习的顶层设计、现实路径及特定群体支持, 体现了从政策导向到实践探索的演进趋势。然而, 该领域仍存在明显的研究失衡现象: 在内容层面, 偏重理论探讨而缺乏对数字学习实践及效果评估的深入考察; 在方法层面, 以思辨研究为主, 实证分析相对不足。未来研究可探索基于终身学习者的数字学习场景的实证研究, 验证数字技术的赋能效果等, 更好地为我国学习型社会建设提供更坚实的学术支撑。

基金资助

本研究获得"北京师范大学教育学一流学科培优项目自由申报课题"的支持。此项目的名称为"职业教育数字化转型的影响机制与发展路径研究"(YLXKPY-XSDW202408)。

参考文献

- 常飒飒和王占仁(2019)。欧盟核心素养发展的新动向及动因——基于对《欧盟终身学习核心素养建议框架 2018》的解读。比较教育研究,41(08),35-43。http://doi.org/10.20013/j.cnki.ice.2019.08.005.
- 菲利普·G.阿特巴赫 (2001)。比较高等教育:知识,大学与发展。人民教育出版社。
- 胡钦太、王姝莉和郭锂(2024)。政策工具视角下我国教育数字化转型的现状与审思。电化教育研究,45(01),61-67+99。http://doi.org/10.13811/j.cnki.eer.2024.01.008.
- 教育部办公厅 (2019)。关于服务全民终身学习促进现代远程教育试点高校网络教育高质量发展有关工作的通知。
 - http://cem.swu.edu.cn/__local/8/D6/E2/52627DD97CF32CCB490F2F98767_57D6687C_7837 C.pdf
- 李旭东和曾艳英(2018)。基于区块链技术的终身职业教育体系构建。职业技术教育,039 (034),19-24。http://doi.org/10.3969/j.issn.1008-3219.2018.34.005
- 刘德建、曾海军、黄璐璐和刘军(2024)。智慧教育让全民享有终身学习机会——基于 2023 全球智慧教育大会观点。电化教育研究, 45(05),98-105。 http://doi.org/10.13811/j.cnki.eer.2024.05.013.
- 刘革平、高楠、胡翰林和秦渝超(2022)。教育元宇宙:特征、机理及应用场景。开放教育研究,28(01),24-33。http://doi.org/10.13966/j.cnki.kfjyyj.2022.01.003.
- 乔爱玲、张伟远和杨萍(2019)。互联网时代老年群体终身学习现状调查报告。电化教育研究, 40(07),121-128。hhtp://doi.org/10.13811/j.cnki.eer.2019.07.015.
- 吴旻瑜和武晓菲(2018)。教育信息化 2.0 的时代逻辑——《教育信息化 2.0 行动计划》解读之一。远程教育杂志,36(04),4-10。http://doi.org/10.15881/j.cnki.cn33-1304/g4.2018.04.002.
- 吴莎莎、白晓晶和蒋明蓉(2018)。基于区块链技术的在线学习数字徽章认证研究。中国远程教育,(11),19-24+79。http://doi.org/10.13541/j.cnki.chinade.20181108.003.

- 张双志和张龙鹏 (2020). 教育治理结构创新:区块链赋能视角. 中国电化教育 (7), 9。 http://doi.org/10.3969/j.issn.1006-9860.2020.07.009
- 中华人民共和国教育部(2020)。2020年3月教育信息化和网络安全工作月报。 http://www.moe.gov.cn/s78/A16/gongzuo/gzzl_yb/202112/t20211221_589031.html 中央网信办、教育部、工业和信息化部和人力资源社会保障部(2022)。2022年提升全民 数字素养与技能工作要点。https://www.cac.gov.cn/2022-03/02/c 1647826931080748.htm
- 朱永新和杨帆 (2023)。我国教育数字化转型的现实逻辑、应用场景与治理路径。中国电化教育, (01),1-7+24。http://doi.org/10.3969/j.issn.1006-9860.2023.01.001